RESEARCH QUESTION:
Can unique additively manufactured composite structures show increased decomposition of a particular compound of interest (COI)?

BACKGROUND & MOTIVATION:
- This project proposes a novel way to decompose harmful gas pollutants into a valuable source of green energy.
- The COI is a toxic gas that can be produced naturally and in industrial processing\(^1\).
- Photocatalysis can help manage the particular COI focused on in this study\(^2\).

CATALYST MANUFACTURING:
- 3 catalytic structure types created:
 - base catalyst (PC 1)
 - modified catalysts (PC 2, PC 3)
- Ink prepared using 95 wt% active material
- Rheological properties established for smooth flow
- Printed by a direct ink writing (DIW) process and CAD assistance

REACTION SETUP:
- Volumetric flow rate, temperature established via gas generator
- Flow through bypass for initial concentration reading
- Valve switches flow to reactor for experimental data collection
- Effluent gas analyzed using digital gas analyzer

RESULTS AND DISCUSSION
- Background studies identified potential losses to reactor
- Empty reactor tests indicate no photolytic decomposition

ANALYSIS:
Quantifying Potential Decomposition
- Consistent catalyst formulation establishes dependability in data comparison
- Background adsorption tests completed
- Comparative data between PC 1 and modified PCs 2 & 3 to show enhanced performance
- Concentration changes in COI and gaseous byproducts monitored

General decomposition mechanism using a photocatalyst\(^3\)
\[
\text{PC} + \text{hv} \rightarrow \text{PC} \left(e^- + h^+ \right) \\
\text{COI} + 2 \text{h}^+ \rightarrow X + 2 \ Y^* \\
2 \ Y^* + 2 \ e^- \rightarrow Y
\]

REFERENCES:

ACKNOWLEDGEMENTS: Special appreciation to Adrian Abdulkhaled for leadership and collaboration, to Dr. Jean Andino for her support in this project, and to the Fulton Schools of Engineering Master’s Opportunity for Research in Engineering (MORE) program.

Figure 1. Schematic for 3D printing via DIW process.

Figure 2. Reactor and data analysis setup for H\(_2\)S flow through 3D-printed monolithic structures.

Graphs:
- Dark Adsorption
- Dark and Light Tests