Interictal Spike Depolarization in the Neocortex: Relationship to Action Potential Inactivation
Lauren Lossner, Biomedical Engineering
Mentor: Dr. Bradley Greger, Associate Professor
School of Biological and Health Systems Engineering

Background
- **Epilepsy:** Neurological condition that affects the nervous system; usually diagnosed after at least two seizures of unknown medical condition
- **Kandel and Spencer:** 1960 publication
 - Classification of spontaneous firing patterns; IIS depolarization occurs and triggers AP firing
- **Hodgkin-Huxley Model**
 - AP inactivation; depolarizations trigger an inward current carried by Na⁺ ions followed by an outward current carried by K⁺ ions

Research Objective
Objective: H-H model utilized to predict pathophysiology of AP inactivation and how it was affected by IIS depolarization

Methods

In Silico:
- Hodgkin-Huxley Model
- Gaussian function: model of interictal spikes
- White noise

Ex Vivo:
- Small block of brain tissue removed and placed into oxygenated slicing solution
- 4/9 neurons analyzed
- Intercital spikes do not occur in excised tissue with normal artificial cerebrospinal fluid

Data and Findings

HODGKIN-HUXLEY MODEL

![H-H model showing APs affected by range of depolarization values.](image)

INTRACELLULAR DATA

![APs affected by IIS depolarization.](image)

Conclusions
- AP waveforms displayed increased duration and decreased amplitude during depolarization, consistent with the definition of inactivated action potentials.
- Comparison: As the simulated IIS amplitude increased, AP firing became inactivated
- Hodgkin-Huxley Model was in good agreement in predicting the effect of IIS depolarization on AP inactivation as seen in the intracellular recordings!

Future Work and Implications
- **Synapses strengthen through plasticity**
- **Interictal spikes cause bursts of action potentials**
- **Interictal spikes contribute to epileptogenesis**

- IIS propagation during seizures and the effect of AP firing correlate with synapse strength if cells fire at the same time
- Could provide clinical use for epilepsy treatment

Acknowledgements
Thank you to Dr. Bradley Greger and Dr. Stephen Foldes, for their excellent technical support and guidance. Also, thank you to the FURI program coordinators and the members of the Neural Engineering Lab at ASU.