The Effect of Deep-Level Reasoning Questions in Digital Learning Resources

Sabrina Cervantes Villa, Human Systems Engineering
Dr. Scotty D. Craig, Associate Professor, Human Systems Engineering
Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University

Research question

How do deep-level reasoning questions affect comprehension of content in digital learning resources?

Theoretical background

- Need: Improve comprehension and engagement within digital learning resources
- Structure of content can benefit student comprehension
 - Increases encoding of information into memory
 - Mayer (1997)
 - Increases self-regulation processes.
 - Lin et al. (2003)
- Questions can benefit student comprehension
 - Traditional learning
 - Lectures
 - Tutoring
 - Instructional Design
 - Digital learning
 - PowerPoint
 - Virtual tutoring
 - Email-based learning
 - E-Textbooks
- Increases learner’s perception of potential
 - Craig, Zhang, Prewitt (2018)
- Guides attention in presentations
 - Lee & Mulder (2020)

Conditions

- Questions are designed to elicit specific responses.
 - Equivalent content statements
 - Shallow-level questions
 - Deep-level questions
 - No response
 - The ___ is....
 - Is the...
 - How does...
- Deep-level questions have shown to be most effective in increasing student comprehension in a variety of learning environments.

Findings

- Although overall learning and perception did score in a favorable direction, they did not demonstrate statistical significance across any one specific condition. These findings may be attributed to:
 - Fatigue Effect
 - Across conditions, there was a negative change in scores from the pre- to post-test. This may be attributed to the forced timing feature implemented on each page.
 - Assessment Sensitivity
 - With a 24-item assessment, a score of 6 can be attributed to chance. Pre- and post-test scores did not progress past this score. This may be due to the assessments being too difficult or poorly aligned with the content of the chapter.

Conclusions

Hypothesis

Students will comprehend information the best when they are presented deep-level questions regarding the learning resource they read.

Methods and materials

- 90 online participants
 - Pre-test: Qualtrics
 - Post-test: Amazon MTurk
 - 24-item assessment
 - Establish how much was learned
 - How useful did the participant find the text?

Researched subjects

- Biology
 - Mathematics
 - Physics
 - Instructional Design

Age range of students

- Middle school
 - High school
 - Post-secondary Professional

Research question

How do deep-level reasoning questions affect comprehension of content in digital learning resources?

Conclusions

Although overall learning and perception did score in a favorable direction, they did not demonstrate statistical significance across any one specific condition. These findings may be attributed to:

- Fatigue Effect
 - Across conditions, there was a negative change in scores from the pre- to post-test. This may be attributed to the forced timing feature implemented on each page.
- Assessment Sensitivity
 - With a 24-item assessment, a score of 6 can be attributed to chance. Pre- and post-test scores did not progress past this score. This may be due to the assessments being too difficult or poorly aligned with the content of the chapter.