Extraction of Silver via Electrowinning for Solar Panel Recycling
Cooper Tezak, chemical engineering
Mentor: Dr. Meng Tao
SEMTE

Purpose
Develop an electrochemical process for recovering silver from end-of-life solar modules. Specifically, find the ideal conditions for the electrowinning of dissolved silver from an HF solution.

Varied Voltage Trials

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>% Mass Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>89.15%</td>
</tr>
<tr>
<td>0.65</td>
<td>98.78%</td>
</tr>
<tr>
<td>0.7</td>
<td>96.36%</td>
</tr>
<tr>
<td>0.75</td>
<td>86.62%</td>
</tr>
<tr>
<td>0.8</td>
<td>78.58%</td>
</tr>
</tbody>
</table>

0.7V appears to be the optimal voltage for mass recovery and product purity.

SEM Morphology

Chronoamperometry

0.7V appears to be the optimal voltage for mass recovery and product purity.

Current should approach zero as silver is extracted from the solution, however under experimental conditions the current remains constant at the max value. A possible parasitic reaction is taking place at the cathode:

\[
O_2(g) + 2H^+ + 2e^- \rightleftharpoons H_2O_2
\]

Conclusion
The experimental setup is insufficient for controlling environmental factors that affect the reaction significantly. Corrosion at the vapor-liquid interface at the working electrode prevents the experiment from running for more than 20 hours without failing prematurely.

Future Research

A Nitrogen purge environment will eliminate all parasitic oxygen reactions and allow for a higher current efficiency. Trials need to be conducted at varying voltages and times to determine the best conditions under nitrogen purge.

References

Meng Tao. Lecture. School of Electrical Computer and Energy Engineering. 2020