Skip to Content

Production of NorHA Microspheres for Peptide Tethering

Tissue engineering is an essential part of regenerative medicine. For bone regeneration, scaffolds are used as ways for inducing stem cell proliferation/differentiation, and drug delivery. Current scaffolds are bulky and inefficient. To produce a scaffold that has improved mechanical properties and is less invasive, the scaffold used for this experiment is a hydrogel formed from

Electro Supn Rolled Scaffolds

The research that is being conducted for this project focuses on turning 2-dimensional electro-spun scaffolds into 3-dimensional scaffolds. Four samples at three different time values. The researcher then transformed these 2-dimensional scaffolds into 3-dimensional scaffolds by hand rolling them. The polymer used to create these scaffolds is polycaprolactone (PCL). This is a biodegradable polyester and

Improving Offset Electrospinning for the Tendon-Bone Junction

Approximately 2 million Americans experience a torn rotator cuff each year. The healthy rotator cuff is a complex tissue consisting of opposing biochemical gradients. This research aids the advancements of rotator cuff tear repairs by creating an improved resolution of a chemical gradient scaffold that mimics innate chemical properties of the tendon-bone junction. Moreover, this

Developing Novel 3D Printed Hydrogel-based Bioinks

The research team is developing a novel 3D printed hydrogel-based bioinks aimed at improving the understanding of and replicating the biochemical and biophysical cues required for musculoskeletal tissue function and prevention of further tissue degeneration. The research team has successfully assembled a working off-the-shelf 3D printer and converted it into a bioprinter capable of extruding

Chemical Gradient Fabrication through Electrospinning

Musculoskeletal diseases plague the lives of 50 percent of people over the age of 18, costing Americans 45 billion dollars per year. This research aims to create a novel technique through electrospinning and is based on creating a proper template for regeneration of tendon-bone injuries, one of the most common musculoskeletal issues. The nanofibers that